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What is Data Fusion?


	As summarized by Wikipedia [https://en.wikipedia.org/wiki/Data_fusion].:
	Data fusion is the process of integrating multiple data sources to produce more consistent, accurate, and useful information than that provided by any individual data source.





In the era of ​ big data ​, many scientific disciplines are producing enormous amounts of heterogeneous data from which
we want to infer reliable predictive or descriptive models. We are thus in a pressing need
for powerful, scalable algorithms that integrate multiple sources of information and learn complex
patterns from this multi-faceted and interconnected data. To face this challenge we propose a novel ​ data fusion approach for ​nonlinear
inference over arbitrary entity-relation graphs​.


WHAT IS NXTfusion

NXTfusion is a Neural Network based data fusion method that extends the classical Matrix Factorization paradigm by allowing non-linear inference over arbitrariy connected Entity-Relation Graphs (ER graphs).




What is this an Entity-Relation graph?

An ER graph is an abstract data structure, similar to a relational database, that allows to model classes of objects (Entities) and relations between them (Relations).

The ER formalism is a generalization of the well known Matrix Factorization formalism, and indeed we can describe every data fusion problem in terms of ​ entity-relation (ER)
models, where entities are classes of objects belonging to a particular domain and
relations describe the interactions between entities. Such an arbitrary data fusion model is ​ completely
general and could allow inference on an extremely ​ broad class of problems​ . Moreover, the ease in which
entities can be connected through relations would allow the inclusion of data sets that are only ​ loosely
related with the problem under investigation.




NXTfusion approach generalizes existing data fusion methods

In general, we each relation corresponds to a possibly sparsely observed matrix and the entities are the objects represented as rows and columns on that matrix.

In the classical Matrix Factorization paradigm, usually only a single matrix Y = UV is factorized into two latent matrices U and V, meaning that a single interaction (Y) between two entities (of which U and V are the latent representation) is considered.
An extension to this is the Tensor Factorization (e.g. https://arxiv.org/abs/1512.00315), where multiple matrices/relations between two entities are factorized at the same time.

Real world data is nevertheless richer than this, and a problem might be characterized by many relations between many pairs of objects, thus forming a complex graph of entities (the nodes) connected by relations (the edges).

Here we further extend the field of data fusion by building a Neural Network-based data fusion framework for non-linear inference over completely arbitrary ER graphs, as we showed here https://doi.org/10.1093/bioinformatics/btab092.




Examples from the scientific world

Few examples from the scientific world are listed in this non-exhaustive list:


	drug-protein interaction predictor, in which Protein and Drugs are entities and the relation between them indicate which drugs interact with which proteins (https://arxiv.org/abs/1512.00315).


	gene prioritization (where Gene and Disease are the entity and the relation “gene u is involved in disease v” between them is modeled) (https://doi.org/10.1093/bioinformatics/bty289)


	protein-protein interaction predictor, including tensor factorization and inference over arbitrary Entity-Relation graph (https://doi.org/10.1093/bioinformatics/btab092)







What is this repository for?

The code here contains a pytorch-based python3 library taht should allow anyone to use our Entity-Relation data fusion framework on your data science problem of choice.
An example of its application, on protein-protein interaction is available here: https://bitbucket.org/eddiewrc/nxtppi/src/master/, and it has been published here: https://doi.org/10.1093/bioinformatics/btab092 .







            

          

      

      

    

  

    
      
          
            
  
Installation guide


How do I set it up?

You can install NXTfusion either from the bitbucket (https://bitbucket.org/eddiewrc/nxtfusion/src/master/) repo or from our pypi package (https://pypi.org/project/nxtfusion/).

In either ways, we recommend to follow these steps:

First, set up a dedicated conda environment, to avoid problems with existing softwares.


	Download and install miniconda from https://docs.conda.io/en/latest/miniconda.html


	Create a new conda environment by typing: conda create -n nxtfusion -python=3.6




Enter the environment by typing: conda activate nxtfusion




Install from git repo

If you want to install NXTfusion from this repo, you need to install the dependencies first.

Install pytorch >= 1.0 with the command: conda install pytorch -c pytorch or refer to pytorch website https://pytorch.org
Install the remaining requirements with the command: conda install scipy numpy multipledispatch
You can remove this environment at any time by typing: conda remove -n nxtfusion --all




Install from pip

If you want to install it via Pypi, just add pip to your conda environment: conda install pip

and then just type: pip install nxtfusion

and all the required dependencies will be installed automatically. Congrats, you’re ready to rock!




Install from conda

TODO







            

          

      

      

    

  

    
      
          
            
  
Quickstart

The examples folder contains some scripts showing in an incremental way how the NXTfusion library can be used, on both synthetic and real data.


Example1: single (nonlinear) matrix factorization

The file examples/example1.py contains the simplest example of how NXTfusion can be used. We use numpy to randomly generate a (100,1000) real valued matrix and we assume it represents the affinity between proteins (represented by the protein entity protEnt) and compounds/drugs (drugEnt).

protDrugMat = np.random.rand(100, 1000)
protEnt = NX.Entity("proteins", list(range(0,100)), np.int16)
drugEnt = NX.Entity("compounds", list(range(0,1000)), np.int16)





We thus transform the numpy.ndarray matrix into a NXTfusion.DataMatrix.DataMatrix object which stores the matrix/relation data in a way suitable for minibatching in a Neural Network (NN). As you can see from the module details, there are many constructors for the NXTfusion.DataMatrix.DataMatrix object, in this case the one that processes a numpy.ndarray matrix will be automatically called.

protDrugMat = DM.DataMatrix("protDrugMatrix", protEnt, drugEnt, protDrugMat)





Next, we define a loss function suitable for this relation. Since we generated real values, we the task of factorizing this relation will be a regression.

protDrugLoss = L.LossWrapper(t.nn.MSELoss(), type="regression", ignore_index = IGNORE_INDEX)





The ignore_index is used to tell the NN which values should be ignored during the computation of the loss. It allows to train on partially observed matrices (sparse).

After that we just need to build the Entity-Relation graph (ERgraph) as we intend it using the APIs provided by NXTfusion. To fo so, we first define a NXTfusion.NXTfusion.MetaRelation “prot-drug” that will contain all the relations between those entities.

We then append the actual NXTfusion.NXTfusion.Relation object (represented by the protDrugMat object) to this NXTfusion.NXTfusion.MetaRelation with the NXTfusion.NXTfusion.MetaRelation.append() method. In the classic Matrix Factorization settings, only one metrix is considered, meaning that there will be only one relation between two entities.

protDrugRel = NX.MetaRelation("prot-drug", protEnt, drugEnt, None, None)
protDrugRel.append(NX.Relation("drugInteraction", protEnt, drugEnt, protDrugMat, "regression", protDrugLoss, relationWeight=1))
ERgraph = NX.ERgraph([protDrugRel])





In this case the NXTfusion.NXTfusion.ERgraph will thus be formed by a single NXTfusion.NXTfusion.MetaRelation containing only a NXTfusion.NXTfusion.Relation. We create such object as shown.

The next step is to define a NN model able to perform inference over this simple graph. We provide such a pytorch NN as example1Model.
We input this model to the NXTfusion.NXmultiRelSide.NNwrapper object, which will mediate the interaction between the NN object and the NXTfusion.NXTfusion.ERgraph, in a transparent way to the user.

model = example1Model(ERgraph, "mod1")
wrapper = NNwrapper(model, dev = DEVICE, ignore_index = IGNORE_INDEX)
wrapper.fit(ERgraph, epochs=50)





The NNwrapper has the scikit-learn-inspired NXTfusion.NXmultiRelSide.NNwrapper.fit() and NXTfusion.NXmultiRelSide.NNwrapper.predict() methods, that are the only way in which the user is required to interact with it. The NXTfusion.NXmultiRelSide.NNwrapper.fit() model will train the example1Model NN to factorize the NXTfusion.NXTfusion.ERgraph.

In order to obtain predictions from the trained model, we will use the NXTfusion.NXmultiRelSide.NNwrapper.predict() method. In order to tell the NXTfusion.NXmultiRelSide.NNwrapper which cells in the matrix/Relation we are interested in, we need to build a special “input vector” X. In this case we want to predict the entire matrix, to make sure that the training converged, and we thus use the buildPytorchFeats function to transform the entire matrix into a NXTfusion.NXmultiRelSide.NNwrapper.predict()-understandable format.

X, Y, corresp = buildPytorchFeats(protDrugMat)
Yp = wrapper.predict(ERgraph, X, "prot-drug", "drugInteraction", None, None)





We thus use the predict to obtain the model’s predictions for the requested positions (X) of the NXTfusion.NXTfusion.Relation “drugInteraction” within the NXTfusion.NXTfusion.MetaRelation “prot-drug” in the NXTfusion.NXTfusion.ERgraph . This specification of which NXTfusion.NXTfusion.Relation and:py:class:NXTfusion.NXTfusion.MetaRelation should be predicted seems unnecessary here, where only one NXTfusion.NXTfusion.Relation exists, but becomes important when you want to predict a specific relation in larger ER graphs.







            

          

      

      

    

  

    
      
          
            
  
Advanced examples



	Example2: tensor factorization

	Example3: Two relations among 3 entities

	Example4: Using side information









            

          

      

      

    

  

    
      
          
            
  
Example2: tensor factorization

The examples/example2.py file contains a simple script performing tensor factorization, namely inference over multiple NXTfusion.NXTfusion.Relation  between two NXTfusion.NXTfusion.Entity .

We start by defining the same entities used in examples/example1.

protEnt = NX.Entity("proteins", list(range(0,100)), np.int16)
drugEnt = NX.Entity("compounds", list(range(0,1000)), np.int16)





Then we create three random matrices that will define the 3 different relations between protEnt and drugEnt, and we put them into the NXTfusion.DataMatrix.DataMatrix format, which allows optimized mini-batching during training.

protDrugMat1 = np.random.rand(100, 1000)
protDrugMat2 = np.random.rand(100, 1000)
protDrugMat3 = np.random.rand(100, 1000)
protDrugMat1 = DM.DataMatrix("protDrugMatrix1", protEnt, drugEnt, protDrugMat1)
protDrugMat2 = DM.DataMatrix("protDrugMatrix2", protEnt, drugEnt, protDrugMat2)
protDrugMat3 = DM.DataMatrix("protDrugMatrix3", protEnt, drugEnt, protDrugMat3)





Since we have three relations, and that they might constitute different prediction tasks (e.g. regression, prediction), we define one loss function for each NXTfusion.NXTfusion.Relation. As an example, here we use 3 different losses for regression that are provided by pytorch.

We encapsulate each of them with the NXTfusion.NXLosses.LossWrapper class: this will allow the losses to ignore the ignore_index values, thus allowing fast (batched) inference over sparsely observed matrices (matrices/Relations with missing values).

protDrugLoss1 = L.LossWrapper(t.nn.MSELoss(), type="regression", ignore_index = IGNORE_INDEX)
protDrugLoss2 = L.LossWrapper(t.nn.L1Loss(), type="regression", ignore_index = IGNORE_INDEX)
protDrugLoss3 = L.LossWrapper(t.nn.SmoothL1Loss(), type="regression", ignore_index = IGNORE_INDEX)





We then build the ER graph using the NXTfusion API. We thus define the NXTfusion.NXTfusion.Relation that will contain all the relations between the protEnt and drugEnt entities, and we add the relations one by one. Finally, we instantiate the NXTfusion.NXTfusion.ERgraph object, which will contain the MetaRelation.

protDrugRel = NX.MetaRelation("prot-drug", protEnt, drugEnt, None, None)
protDrugRel.append(NX.Relation("drugInteraction1", protEnt, drugEnt, protDrugMat1, "regression", protDrugLoss1, relationWeight=1))
protDrugRel.append(NX.Relation("drugInteraction2", protEnt, drugEnt, protDrugMat2, "regression", protDrugLoss2, relationWeight=1))
protDrugRel.append(NX.Relation("drugInteraction3", protEnt, drugEnt, protDrugMat3, "regression", protDrugLoss3, relationWeight=1))
ERgraph = NX.ERgraph([protDrugRel])





We perform training as usual, defining a t.nn.Module suitable for the target ERgraph and we incapsulate it into the NNwrapper. We can then use the .fit() and .predict() methods to train and test the model.

model = example2Model(ERgraph, "mod2")
wrapper = NNwrapper(model, dev = DEVICE, ignore_index = IGNORE_INDEX)
wrapper.fit(ERgraph, epochs=5)





Since the ERgraph contains multiple relations, we can predict separately each of them.
The following code shows how to do it. First, we compute the X values for the  NXTfusion.NXTfusion.Relation we want to predict, and then we specify to the .predict function the name of the target MetaRelation and the NXTfusion.NXTfusion.Relation in it. The NXTfusion.NXmultiRelSide.NNwrapper.predict() method will return the predictions for the specified relation, or an error if it is not present.

X, Y, corresp = buildPytorchFeats(protDrugMat2)
Yp1 = wrapper.predict(ERgraph, X, "prot-drug", "drugInteraction2", None, None)
print("Final MSE: ", (np.sum((np.array(Yp) - np.array(Y))**2))/float(len(Yp)))

X, Y, corresp = buildPytorchFeats(protDrugMat3)
Yp1 = wrapper.predict(ERgraph, X, "prot-drug", "drugInteraction3", None, None)
print("Final MSE: ", (np.sum((np.array(Yp) - np.array(Y))**2))/float(len(Yp)))









            

          

      

      

    

  

    
      
          
            
  
Example3: Two relations among 3 entities

The examples/example3.py script shows how to use NXTfusion to perform inference over 3 NXTfusion.NXTfusion.Entity connected by 2 NXTfusion.NXTfusion.Relation.

As usual (see previous examples) we create the random matrices representing our relations.In this case we define also the protein-domain NXTfusion.NXTfusion.Relation, creating a binary (0/1) matrix. The protein-domain NXTfusion.NXTfusion.Relation mimicks the presence or absence of protein domains (e.g. PFAM) in each protein.

protEnt = NX.Entity("proteins", list(range(0,100)), np.int16)
drugEnt = NX.Entity("compounds", list(range(0,1000)), np.int16)
domainEnt = NX.Entity("protein", list(range(0,700)), np.int16)

protDrugMat = np.random.rand(100, 1000)
protDomainMat = np.random.randint(2, size=(100, 700))
protDrugMat = DM.DataMatrix("protDrugMatrix", protEnt, drugEnt, protDrugMat)
protDomainMat = DM.DataMatrix("protDomainMatrix", protEnt, domainEnt, protDomainMat)





We transformed the raw data in NXTfusion.DataMatrix.DataMatrix objects, as usual.

We then define the losses. In this case, the protein-domain NXTfusion.NXTfusion.Relation constitutes a binary prediction (discrimination) task, and so we use the t.nn.BCEWithLogitsLoss loss from pytorch and we specify “binary” as type for this loss. Ignore_index works as usual.

protDrugLoss = L.LossWrapper(t.nn.MSELoss(), type="regression", ignore_index = IGNORE_INDEX)
protDomainLoss = L.LossWrapper(t.nn.BCEWithLogitsLoss(), type="binary", ignore_index = IGNORE_INDEX)





This time we will define two NXTfusion.NXTfusion.MetaRelation, one for the prot-drug and one for the prot-domain relations. We append the corresponding NXTfusion.NXTfusion.Relation to each MetaRelation.

Here we build the prot-drug MetaRelation:
.. code-block:: python


protDrugRel = NX.MetaRelation(“prot-drug”, protEnt, drugEnt, None, None)
protDrugRel.append(NX.Relation(“drugInteraction”, protEnt, drugEnt, protDrugMat, “regression”, protDrugLoss, relationWeight=1))




And here we build the prot-domain NXTfusion.NXTfusion.Relation. Finally, we add BOTH MetaRelations to the ERgraph.

protDomainRel = NX.MetaRelation("prot-domain", protEnt, domainEnt, None, None)
protDomainRel.append(NX.Relation("pfamDomains", protEnt, domainEnt, protDomainMat, "binary", protDomainLoss, relationWeight=1))
ERgraph = NX.ERgraph([protDrugRel, protDomainRel])





Using the NNwrapper object, we can perform training and testing as usual.

Please pay attention to the fact that BCEWithLogitsLoss does not use a Sigmoid activation in the NN. If, after prediction, you want to compute the prediction scores, you will have to apply t.nn.Sigmoid by yourself! (This is a pytorch good practice, not NXTfusion.)





            

          

      

      

    

  

    
      
          
            
  
Example4: Using side information

Latent data fusion methods, such as Matrix Factorization or Entity-Relation learn a latent representation for for the entities representing the objects described by the rows and the columns of each matrix/Relation.

Clearly, in these settings, if a row or a column of the matrix is completely empty, no optimization of the corresponding latent variables can be performed. A possible solution to overcome this problem is to add to the model some explicit variables, which are analogous to the conventional features used in regular ML methods. These feature vecotrs are called side information in the MF/ER data fusion context.

In examples/exampleSide.py we show and example of how side information can be introduced into a NXTfusion model.

In this example we will use the following datasets:

wget http://homes.esat.kuleuven.be/~jsimm/chembl-IC50-346targets.mm
wget http://homes.esat.kuleuven.be/~jsimm/chembl-IC50-compound-feat.mm





First we read the datasets and we transpose the traget matrix to make sure that the matrix is in the prot-drug format.

WARNING the ECFP side information is quite large and due to some missing support for sparse side information, it will required 12Gb of RAM. For this reason we are reading it but running the example on a smaller dataset.

Please note that for matrices/Relations the sparsity support IS present in NXTfusion, and so the library can scale quite well to very large matrices.

ic50 = mmread("chembl-IC50-346targets.mm").transpose()
shape = ic50.shape
#read the side information (features)
#requires 12Gb of ram, so we propose a smaller (randomly generated) alternative
#(Sparse support for side information is currentyl missing)
ecfp = mmread("chembl-IC50-compound-feat.mm")
ecfp = np.random.rand(ecfp.shape[0], 50)





We define the Entities as usual, and we transform the input data into DataMatrix format. In this case we transform also the SideInfo raw data into a NXTfusion-understandable format using the SideInfo class.

protEnt = NX.Entity("proteins", list(range(0,shape[0])), np.int16)
drugEnt = NX.Entity("compounds", list(range(0,shape[1])), np.int16)
ic50DrugMat = DM.DataMatrix("ic50", protEnt, drugEnt, ic50)
ecfpSideMat = DM.SideInfo("drugSide", drugEnt, ecfp)





We build the MetaRelation and Relation as usual. The only diference is that the ecfpSideMat containing the side information is passed as argument to the MetaRelation, in order to specify that the side information for the drugEnt NXTfusion.NXTfusion.Entity (ent2) is available.

protDrugRel = NX.MetaRelation("prot-drug", protEnt, drugEnt, None, ecfpSideMat)
protDrugRel.append(NX.Relation("drugInteraction", protEnt, drugEnt, ic50DrugMat, "regression", protDrugLoss, relationWeight=1))
ERgraph = NX.ERgraph([protDrugRel])





Training and testing is performed as usual.

model = example1Model(ERgraph, "mod1")
wrapper = NNwrapper(model, dev = DEVICE, ignore_index = IGNORE_INDEX)
wrapper.fit(ERgraph, epochs=5)





For prediction, we need to specify the side information again. This is done by just passing it to the .predict() method.

X, Y, corresp = buildPytorchFeats(ic50DrugMat)
Yp = wrapper.predict(ERgraph, X, "prot-drug", "drugInteraction", None, ecfpSideMat)
print("Final MSE: ", (np.sum((np.array(Yp) - np.array(Y))**2))/float(len(Yp)))

#we do the same but taking as input the coo_matrix instead
X, Y, corresp = buildPytorchFeats(ic50, protEnt, drugEnt)
Yp = wrapper.predict(ERgraph, X, "prot-drug", "drugInteraction", None, ecfpSideMat)
print("Final MSE: ", (np.sum((np.array(Yp) - np.array(Y))**2))/float(len(Yp)))





In this example we compute the predictions twice to show that the buildPytorchFeats function can build the input X vector starting from both DataMatrix objects or other formats like scipy.sparse.coo_matrix objects thanks to method overloading.





            

          

      

      

    

  

    
      
          
            
  
How to build a NN model to be used in NXTfusion

As you can see from the examples in the examples/ folder, in order to perform inference over an ERgraph it is necessary to pass a NN object (t.nn.Module) to NXTfusion.NXmultiRelSide.NNwrapper.fit.

Our original idea was to automatically build a model suitable for each specific NXTfusion.NXTfusion.ERgraph, but, while developing the library, some considerations made us realize that this was not the best solution. First, NN are designed to be customizable and flexible, why restricting the users to our choices? Second, the entire idea of NXTfusion is to allow inference over totally arbitrary ER graphs, why restricting the most important part of the inference, namely the NN model that is actually trained to factorize the graph?

We thus opted for providing a skeleton class NXTfusion.NXmodels.NXmodelProto that contains a prototypical model that could be used in the NXTfusion.NXmultiRelSide.NNwrapper. It is barely an interface, but, alongside with this explanation and the NN models inherited from it in the examples folder we hope it’s enough.


NN model for single matrix factorization

In examples/example1.py and we perform inference over an ERgraph with 1 Relation between 2 Entities (matrix factorization problem).

In order to do so we propose the following simple model.

class example1Model(NXmodelProto):
   def __init__(self, ERG, name):
       super(example1Model, self).__init__()
       self.name = name
       ##########DEFINE NN HERE##############
       protEmbLen = ERG["prot-drug"]["lenDomain1"]
       drugEmbLen = ERG["prot-drug"]["lenDomain2"]
       PROT_LATENT_SIZE = 10
       DRUG_LATENT_SIZE = 20
       ACTIVATION = t.nn.Tanh
       self.protEmb = t.nn.Embedding(protEmbLen, PROT_LATENT_SIZE)
       self.protHid = t.nn.Sequential(t.nn.Linear(PROT_LATENT_SIZE, 10), t.nn.LayerNorm(10), ACTIVATION())

       self.drugEmb = t.nn.Embedding(drugEmbLen, DRUG_LATENT_SIZE)
       self.drugHid = t.nn.Sequential(t.nn.Linear(DRUG_LATENT_SIZE, 20), t.nn.LayerNorm(20), ACTIVATION())
       self.biProtDrug = t.nn.Bilinear(10, 20, 10)
       self.outProtDrug = t.nn.Sequential( t.nn.LayerNorm(10), ACTIVATION(), t.nn.Dropout(0.1), t.nn.Linear(10,1))
       self.apply(self.init_weights)





The trainable latent variables are represented by the protEmb and drugEmb, which are t.nn.Embedding objects.
The embeddings are processed by the specific protHid and drugHid hidden layer.
These layers are then joined (effectively performing the factorization), by the biProtDrug bilinear layer, which is followed by the outProtDrug final layer, which outputs the final prediction.

The names of these submodules are intended to be as familiar as possible with respect to the Entities and Relations initialized in the main of examples/example1.py.

The forward method helps understanding how these submodules are arranged. They basically connect the protEmb and drugEmb latent variables (embeddings) into making a non-linear final prediction of the cells of the target matrix.

def forward(self, relName, i1, i2, s1=None, s2=None):
    if relName == "prot-drug":
            u = self.protEmb(i1)
            v = self.drugEmb(i2)
            u = self.protHid(u).squeeze()
            v = self.drugHid(v).squeeze()
            o = self.biProtDrug(u, v)
            o = self.outProtDrug(o)
            return o





In order to make the parameters of the models (e.g. latent sizes, etc.) less dependent on magic numbers, since the NXTfusion.NXmodels.NXmodelProto class takes as input the entire ERgraph, it is possible to call by name every NXTfusion.NXTfusion.Relation and NXTfusion.NXTfusion.MetaRelation in order to automatically fetch information such as the expected number of objects in each NXTfusion.NXTfusion.Entity, as shown here.

protEmbLen = ERG["prot-drug"]["lenDomain1"]
drugEmbLen = ERG["prot-drug"]["lenDomain2"]








A NN for tensor factorization

As shown in examples/example2.py, if the model needs to model multiple NXTfusion.NXTfusion.Relation between two NXTfusion.NXTfusion.Entity, once the submodules are defined for a single relation, is sufficient to increase the number of output neuronsin the outProtDrug final layer. In this case there are 3 relations to be reconstructed (predicted) and indeed there are 3 output neurons.

self.outProtDrug = t.nn.Sequential( t.nn.LayerNorm(10), ACTIVATION(), t.nn.Dropout(0.1), t.nn.Linear(10,3))
def forward(self, relName, i1, i2, s1=None, s2=None):
       if relName == "prot-drug":
               u = self.protEmb(i1)
               v = self.drugEmb(i2)
               u = self.protHid(u).squeeze()
               v = self.drugHid(v).squeeze()
               o = self.biProtDrug(u, v)
               o = self.outProtDrug(o)
               return o








A NN for inference over arbitrary ER graphs

When the NN model must be able to predict mutiple NXTfusion.NXTfusion.MetaRelation involving multiple NXTfusion.NXTfusion.Entity (an arbitrarily connected ERgraph).

In examples/example3.py we show such a NN model. We define the embedding, entity-specific hidden (hid) and bilinear+output layer for 2 NXTfusion.NXTfusion.MetaRelation among 3 NXTfusion.NXTfusion.Entity.

class example3Model(NXmodelProto):
     def __init__(self, ERG, name):
             super(example3Model, self).__init__()
             self.name = name
             ##########DEFINE NN HERE##############
             protEmbLen = ERG["prot-drug"]["lenDomain1"]
             drugEmbLen = ERG["prot-drug"]["lenDomain2"]
             domainEmbLen = ERG["prot-domain"]["lenDomain2"]
             PROT_LATENT_SIZE = 10
             DOMAIN_LATENT_SIZE = 10
             DRUG_LATENT_SIZE = 20
             ACTIVATION = t.nn.Tanh
             self.protEmb = t.nn.Embedding(protEmbLen, PROT_LATENT_SIZE)
             self.protHid = t.nn.Sequential(t.nn.Linear(PROT_LATENT_SIZE, 10), t.nn.LayerNorm(10), ACTIVATION())

             self.drugEmb = t.nn.Embedding(drugEmbLen, DRUG_LATENT_SIZE)
             self.drugHid = t.nn.Sequential(t.nn.Linear(DRUG_LATENT_SIZE, 20), t.nn.LayerNorm(20), ACTIVATION())
             self.biProtDrug = t.nn.Bilinear(10, 20, 10)
             self.outProtDrug = t.nn.Sequential( t.nn.LayerNorm(10), ACTIVATION(), t.nn.Dropout(0.1), t.nn.Linear(10,1))

             self.domainEmb = t.nn.Embedding(domainEmbLen, DOMAIN_LATENT_SIZE)
             self.domainHid = t.nn.Sequential(t.nn.Linear(DOMAIN_LATENT_SIZE, 20), t.nn.LayerNorm(20), ACTIVATION())
             self.biProtDomain = t.nn.Bilinear(10, 20, 10)
             self.outProtDomain = t.nn.Sequential( t.nn.LayerNorm(10), ACTIVATION(), t.nn.Dropout(0.1), t.nn.Linear(10,1))

             self.apply(self.init_weights)





Besides the initializations, the most important part to understand is in the forward method. The NXTfusion.NXmultiRelSide.NNwrapper class will call by name the forward to predict each NXTfusion.NXTfusion.MetaRelation in the NXTfusion.NXTfusion.ERgraph, and to do wo it will use the argument relName.

The NNwrapper thus uses the specific name of each NXTfusion.NXTfusion.MetaRelation to tell the forward which branch of the NN must be run (each branch corresponds to a NXTfusion.NXTfusion.MetaRelation, as explained here https://doi.org/10.1093/bioinformatics/btab09).

def forward(self, relName, i1, i2, s1=None, s2=None):
     if relName == "prot-drug":
             u = self.protEmb(i1)
             v = self.drugEmb(i2)
             u = self.protHid(u).squeeze()
             v = self.drugHid(v).squeeze()
             o = self.biProtDrug(u, v)
             o = self.outProtDrug(o)
     if relName == "prot-domain":
             u = self.protEmb(i1)
             v = self.domainEmb(i2)
             u = self.protHid(u).squeeze()
             v = self.domainHid(v).squeeze()
             o = self.biProtDomain(u, v)
             o = self.outProtDomain(o)
     return o





It is thus crucial to build a forward specifying the different branches that the computation of each NXTfusion.NXTfusion.MetaRelation needs to run in order to obtain the final predictions.




Further reading

A more rigorous and theoretical description of the intuitiion behind the models shown in the examples/ scripts can be found in the original publication https://doi.org/10.1093/bioinformatics/btab09.







            

          

      

      

    

  

    
      
          
            
  
List of modules and functions in nxtfusion



	NXTfusion.DataMatrix module

	NXTfusion.NXFeaturesConstruction module

	NXTfusion.NXLosses module

	NXTfusion.NXTfusion module

	NXTfusion.NXmodels module

	NXTfusion.NXmultiRelSide module









            

          

      

      

    

  

    
      
          
            
  
NXTfusion.DataMatrix module


	
class NXTfusion.DataMatrix.DataMatrix

	Bases: object

The input “data” format should be: {(ent1, ent2): value} for all the observed elements in the matrix.

The format in which the data is stored in the DataMatrix object is the following:
featsHT = {domain1Name_numeric : [ numpy16_domain2Names_numeric, numpyX_labels ]}



	
__init__(self, name: str, ent1: Entity, ent2: Entity, data: numpy.ndarray)

	One of the alternative constructors for the DataMatrix class.


	Parameters

	
	name (str) – Name of the data matrix


	ent1 (Entity) – Entity object representing the object on the dimension 0


	ent2 (Entity) – Entity object representing the object on the dimension 1


	data (dict) – Hash table containing the (sparse) elements and in the matrix describing the relation. The input “data” format should be: {(ent1, ent2): value} for all the observed elements in the matrix.


	dtype (numpy.dtype) – The smallest possible type that could be used to store the elements of the matrix (e.g. np.int16 can represent up to 2^16 unique objects in the entity)













	
__init__(self, name: str, ent1: NX.Entity, ent2: NX.Entity, data: dict, dtype: type)

	One of the alternative constructors for the DataMatrix class.


	Parameters

	
	name (str) – Name of the data matrix


	ent1 (Entity) – Entity object representing the object on the dimension 0


	ent2 (Entity) – Entity object representing the object on the dimension 1


	data (numpy.ndarray) – Numpy matrix containing the (dense) describing the relation between ent1 and en2.


	dtype (numpy.dtype) – The smallest possible type that could be used to store the elements of the matrix (e.g. np.int16)






	Returns

	the message id










	
__init__(self, name: str, data: numpy.ndarray, dtype: numpy.dtype)

	Simplified constructor for the DataMatrix class. Entities are inferred from the dimensionality of the np.ndarray.


	Parameters

	
	name (str) – Name of the data matrix


	data (numpy.ndarray) – Numpy matrix containing the (dense) describing the relation between ent1 and en2.


	dtype (numpy.dtype) – The smallest possible type that could be used to store the elements of the matrix (e.g. np.int16 can represent up to 2^16 unique objects in the entity)













	
__init__(self, path: str)

	Constructor that reads the DataMatrix from a previously serialized DataMatrix object.


	Parameters

	path (str) – Path of the serialized DataMatrix













	
size()

	Function that return the size of the relation (number of elements in the matrix).


	Returns

	



	Return type

	Size of the relation in the DataMatrix object










	
standardize()

	Method that standardizes the matrix with the formula x’ = (x - mu)/s, where mu is the mean and s is the standard deviation.


	Returns

	



	Return type

	None










	
toHashTable() → dict

	Method that returns an hash table (dict) containing the DataMatrix data.


	Returns

	



	Return type

	dict














	
class NXTfusion.DataMatrix.SideInfo

	Bases: object

Class that encapsulated the side information raw data in order to be efficiently processed by NXTfusion. You can use this class to wrap side information vectors analogously to how DataMatrix wraps matrix/relations.



	
__init__(self, name: str, ent1: Entity, ent2: Entity, data: dict)

	One of the alternative constructors for the SideInfo class.


	Parameters

	
	name (str) – Name of the data matrix


	ent1 (Entity) – Entity object representing the object on the dimension 0


	data (dict) – Dict containing ent1 objects as keys and feature vectors (side information) as values.













	
__init__(self, name: str, ent1: Entity, ent2: Entity, data: numpy.ndarray)

	One of the alternative constructors for the SideInfo class.


	Parameters

	
	name (str) – Name of the data matrix


	ent1 (Entity) – Entity object representing the object on the dimension 0


	data (numpy.ndarray) – Numpy array that contains the side information. It has shape (ent1 obj, feature length), similarly to a scikit-learn feature vector.













	
__init__(self, name: str, ent1: Entity, ent2: Entity, data: scipy.sparse.coo_matrix)

	One of the alternative constructors for the SideInfo class.


	Parameters

	
	name (str) – Name of the data matrix


	ent1 (Entity) – Entity object representing the object on the dimension 0


	data (scipy.sparse.coo_matrix) – Scipy coo_matrix that contains the side information. It has shape (ent1 obj, feature length), similarly to a scikit-learn feature vector. It can be sparse, but currently the sparsity during mini batching is NOT supported.













	
__init__(self, path: str)

	This constructor reads a serialized (SideInfo.dump()) SideInfo object.
:param str path: Path to the serialized SideInfo object.









	
dump(path=None)

	Method that serializes the SideInfo storing it at the selected path.


	path: str
	Destination path for the serialized file






	Returns

	



	Return type

	None










	
normalize()

	Method that standardizes the matrix with the formula x’ = (x - mu)/s, where mu is the mean and s is the standard deviation.


	Returns

	



	Return type

	None

















            

          

      

      

    

  

    
      
          
            
  
NXTfusion.NXFeaturesConstruction module


	
NXTfusion.NXFeaturesConstruction.buildPytorchSide(data, domain, expectedLen=20, sideDtype=<class 'numpy.float32'>)

	This function builds the data structure containing the side information


The data structure is a {} indicized with the domain numeric names.

sideX = {domainName_numeric : numpy32_feats}












	
NXTfusion.NXFeaturesConstruction.buildPytorchFeats(data: numpy.ndarray, domain1: Entity, domain2: Entity, side1=None, side2=None)

	This function is used to produce the input for the NNwrapper.predict() method, at prediction time. It produces the inputs necessary to predict the output for certain cells (or the entire matrix) for a given relation.

This version of the method takes as prediction target a (dense) numpy matrix.


	Parameters

	
	data (numpy.ndarray) – Numpy matrix representing the target. This form of the method is more useful when the entire matrix needs to be predicted. The actual values in the matrix are provided as “labels” in output, but are ignored during prediction.


	domain1 (Entity) – Entity representing the objects on the dimension 0 of the data matrix


	domain2 (Entity) – Entity representing the objects on the dimension 1 of the data matrix






	Returns

	Returns 3 lists (x, y, corresp) when used without side information. The first (x) is a list of tuples [(i,j),(k,j),...] containing the pairs of of objects belonging to domain1 and domain2 that needs to be predicted.





The second (y) is a list containing the values of the input data matrix corresponding to the pairs of object in x.
The third (corresp) is a list of tuples containing the corresponding names of the pairs of objects listed in x.






	
NXTfusion.NXFeaturesConstruction.buildPytorchFeats(data: dict, domain1: Entity, domain2: Entity, side1=None, side2=None)

	
This function is used to produce the input for the NNwrapper.predict() method, at prediction time. It produces the inputs necessary to predict the output for certain cells (or the entire matrix) for a given relation.




This version of the method takes as prediction target a dict containing the pairs of ojects that need to be predicted. This is useful when only relatively few cells of the matrix need to be predicted (sparse prediction).


	Parameters

	
	data (dict) – Dict in the form {(obj[i],obj[j]):value1, (obj[i],obj[k]):value2, …}. It represents the target cells of the matrix that need to be predicted. The actual values in the matrix are provided as value associated to each pair of objects in the dict, but are ignored during prediction. Used to represent sparse matrices.


	domain1 (Entity) – Entity representing the objects on the dimension 0 of the data matrix


	domain2 (Entity) – Entity representing the objects on the dimension 1 of the data matrix






	Returns

	Returns 3 lists (x, y, corresp) when used without side information. The first (x) is a list of tuples [(i,j),(k,j),...] containing the pairs of of objects belonging to domain1 and domain2 that needs to be predicted.





The second (y) is a list containing the values of the input data matrix corresponding to the pairs of object in x.
The third (corresp) is a list of tuples containing the corresponding names of the pairs of objects listed in x.






	
NXTfusion.NXFeaturesConstruction.buildPytorchFeats(datam:DataMatrix, = None, side2 = None)

	This function is used to produce the input for the NNwrapper.predict() method, at prediction time. It produces the inputs necessary to predict the output for certain cells (or the entire matrix) for a given relation.
This version of the method takes as prediction target a DataMatrix object.


	Parameters

	datam (DataMatrix) – DataMatrix object containing the matrix representing the predidction target. The actual values in the observed cells in the DataMatrix are provided as “labels” y in output, but are ignored during prediction.



	Returns

	Returns 3 lists (x, y, corresp) when used without side information. The first (x) is a list of tuples [(i,j),(k,j),...] containing the pairs of of objects belonging to domain1 and domain2 that needs to be predicted.





The second (y) is a list containing the values of the input data matrix corresponding to the pairs of object in x.
The third (corresp) is a list of tuples containing the corresponding names of the pairs of objects listed in x.









            

          

      

      

    

  

    
      
          
            
  
NXTfusion.NXLosses module


	
class NXTfusion.NXLosses.FocalLoss(alpha=1, gamma=2, logits=True, reduction='sum')

	Bases: torch.nn.modules.module.Module

Implementation of the FocalLoss, which is used as loss for heavily unbalanced binary predictions. It is bult as a convetional pytorch module.


	
__init__(alpha=1, gamma=2, logits=True, reduction='sum')

	Constructor for the FocalLoss.


	Parameters

	
	alpha (int) – Parameter of the loss


	gamma (int) – Parameter of the loss


	logits (bool) – Uses logits if True

















	
class NXTfusion.NXLosses.LossWrapper(loss: torch.nn.modules.module.Module, type: str, ignore_index: int)

	Bases: torch.nn.modules.module.Module

Class that wraps any pytorch loss allowing for ignore index. In the Matrix Factorization context it may be useful to define a value indicating missing values even when performing a regression, for example if the goal is to predict a sparsely observed real-valued matrix.


	
__call__(input, target)

	Function defining the forward pass for this wrapper. It implements the ignore_index filtering and then it calls the actual self.loss on the remaining values.


	Parameters

	
	input (t.nn.Tensor) – Pytorch tensor containing the predicted values


	target (t.nn.Tensor) – Pytorch tensor containing the target values






	Returns

	



	Return type

	Loss score computed only for the target values that are not equal to self.ignore_index.










	
__init__(loss: torch.nn.modules.module.Module, type: str, ignore_index: int)

	Constructor for the wrapper.


	Parameters

	
	loss (t.nn.Module) – The argument can be any pytorch compatible loss functioni


	type – Specifies wheter is a regression or a binay prediction (deprecate?)


	ignore_index (int) – Specifies which value should be ignored while computing the loss, to allow for the presence of missing values in the matrix/relation.




















            

          

      

      

    

  

    
      
          
            
  
NXTfusion.NXTfusion module


	
class NXTfusion.NXTfusion.Entity(name, domain, dtype=<class 'numpy.int32'>)

	Bases: object

Class representing the Entity concept.



	
__getitem__(self, x: str)

	Method that  returns the numeric value internally associated to each object in the Entity class.


	Parameters

	x (str) – String name of a specific object in the Entity.



	Returns

	primary key int










	
__getitem__(self, x: int)

	Method that  returns the str name of the object with primary key x.


	Parameters

	x (int) – Primary key (unique id) of an object in the domain represented by the Entity.



	Returns

	name of the object : str













	
__init__(name, domain, dtype=<class 'numpy.int32'>)

	Constructor for the Entity class.


	Parameters

	
	name (str) – Name of the Entity (use a mnemonic name describing the class of objects represented by the Entity)


	domain (iterable (list) containing str) – List of the possible objects belonging to this class (e.g. patients IDs, proteins Uniprot identifiers, …). It is an unique identifier naming (with a string) all the objects composing the domain of the Entity.


	dtype (np.dtype) – Smallest possible numpy type able to uniquely enumerate all the objects. len(domain) < max_number_representable(dtype).

















	
class NXTfusion.NXTfusion.Relation(name: str, domain1: NXTfusion.NXTfusion.Entity, domain2: NXTfusion.NXTfusion.Entity, data, task: str, loss: torch.nn.modules.module.Module, relationWeight: float, side1=None, side2=None, path=None)

	Bases: dict

Class that represent a relation (matrix in MF terms) with all its parameters and functions.


	
__init__(name: str, domain1: NXTfusion.NXTfusion.Entity, domain2: NXTfusion.NXTfusion.Entity, data, task: str, loss: torch.nn.modules.module.Module, relationWeight: float, side1=None, side2=None, path=None)

	Constructor for the Relation class..


	Parameters

	
	name (str) – Mnemonic name of the specific relation/matrix.


	domain1 (Entity) – Entity1 involved in the relation (on dimension 0)


	domain2 (Entity) – Entity2 involved in the relation (on dimension 1)


	data (DataMatrix) – DataMatrix object containing the matrix describing this relation


	task (str ["regression", "binary"]) – Type of prediction task associated to this relation. “Regression” for real valued predictions, “binary” for binary classification.


	loss (NX.NXLosses or t.nn.Module) – Pytorch-like loss module corresponding to the loss that must be used to compute the reconstruction error for this relation.


	relationWeight (float) – A relation-specific weight that will multiply the loss score during training.

















	
class NXTfusion.NXTfusion.MetaRelation(name, domain1, domain2, side1=None, side2=None, relations=[], prediction=False)

	Bases: object

Constructor for the Relation class. The Meta Relation represents multi-relations between the same entities (used for example in tensor factorization).

As a convention, we recommend to use names in the form ENT1-ENT2.

The domains must be the same for each relation in it, since the MetaRelation defines a tensor where the dimension 0 and 1 represent the same entities for all the matrices involved in the tensor.
Can allow side info (common to all relations in it).




	
__getitem__(self, x: str)

	Getitem method that searches by Relation.name


	Parameters

	x (str) – The name of a Relation in this MetaRelation



	Returns

	The target Relation or None













	
__getitem__(self, x: int)

	Getitem method that searches by position of the target Relation in the tensor/MetaRelation.


	Parameters

	x (str) – The position (index) of a Relation in this MetaRelation



	Returns

	The target Relation or None













	
__init__(name, domain1, domain2, side1=None, side2=None, relations=[], prediction=False)

	Constructor for the MetaRelation class.


	Parameters

	
	name (str) – Mnemonic name of the specific relation/matrix.


	domain1 (Entity) – Entity1 involved in the relation (on dimension 0)


	domain2 (Entity) – Entity2 involved in the relation (on dimension 1)


	relations (list of NX.Relation objects) – List of the relations involved in this MetaRelation (tensor)













	
append(r)

	Method that adds a Relation object to an existing MetaRelation
:param r:
:type r: Relation






	
getPos(x)

	




	
next()

	




	
pop(pos)

	








	
class NXTfusion.NXTfusion.ERgraph(entityList: list, name='')

	Bases: list

Class that represents the entire Entity-Relation graphs, namely a list of MetaRelations. Each MetaRelation might contain multiple Relations.



	
__contains__(self, x: int)

	Function that determines whether a specific MetaRelation object is present in the graph.


	Parameters

	x (MetaRelation) – A MetaRelation object.



	Returns

	bool (Is x present?)










	
__contains__(self, x: str)

	Function that determines whether a specific MetaRelation.name is present in the graph.


	Parameters

	x (str) – A MetaRelation str name.



	Returns

	bool (Is x present?)













	
__init__(entityList: list, name='')

	Constructor for the ERgraph (Entity-Relation Graph) object.


	Parameters

	entityList (list of MetaRelations) – List of MetaRelations that describe the full Entity Relation graph.










	
__str__()

	Function that expresses the ERgraph as string













            

          

      

      

    

  

    
      
          
            
  
NXTfusion.NXmodels module


	
class NXTfusion.NXmodels.NXmodelProto

	Bases: torch.nn.modules.module.Module

This class is the father of the pytorch modules used in the ER datafusion
wrapper. It implements basic functions, leaving only the init and the forward empty









            

          

      

      

    

  

    
      
          
            
  
NXTfusion.NXmultiRelSide module


	
class NXTfusion.NXmultiRelSide.NNwrapper(model, dev, ignore_index, initialEpoch=0, nworkers=0)

	Bases: object

Class that wraps a t.nn.Module (pytorch module) and uses scikit-learn-like methods such as .fit() and .predict() to train and test it.


	
__init__(model, dev, ignore_index, initialEpoch=0, nworkers=0)

	Constructor for the NNWrapper class, which facilitates and standardizes the training of pytorch neural networks.


	Parameters

	
	model (t.nn.Module) – The pytorch Neural Network that should be trained or tested.


	def (t.device) – The device on which the model should run. E.g. t.device(“cuda”) or t.device(“cpu:0”)


	ignore_index (int) – The ignore index value that will be used to mark “missing values” and “N/A” on partially observed matrices, in order to let the corresponding loss ignore those instances.













	
computeLosses(y, yp, losses, relationData, weightRelations)

	This function computes the losses for the entire ER graph, by iterating through them.  Used internally.


	Parameters

	
	y (t.tensor) – Pytorch tensor containing the labels


	yp (t.tensor) – Pytorch tensor containing the predictions


	losses (list) – list of losses (LossWrapper or t.nn.Module)


	relationData (list) – list of MetaRelations


	weightRelations (list) – list of weights associated to each loss






	Returns

	
	loss (real) – total loss


	tmpLoss (list) – list containing the losses associated to each Relation


	meta private:















	
countParams(parameters: list) → int

	Method that counts the number of trainable parameters in the model.


	Parameters

	parameters (iterable) – The iterable containtaining the pytorch model parameters.



	Returns

	



	Return type

	Number of parameters (int)










	
fit(relationList, epochs=100, batch_size=500, save_model_every=10, LOG=False, MUTE=True)

	Function that performs the training of the wrapped pytorch model.
It is analogous to scikit-learn .fit() method.


	Parameters

	
	relationList (ERgraph) – 


	epochs (int) – Number of epochs


	batch_size (int) – batch size during training


	save_model_every (int) – Stores the model every int epochs













	
predict(ERgraph, X, metaRelationName, relationName, sidex1=None, sidex2=None, batch_size=500, plotGraph=False)

	Function that performs the training of the wrapped pytorch model. It is analogous to scikit-learn .predict() method.


	Parameters

	
	ERgraph (ERgraph) – 


	X (list) – List containing the 2D coordinates of the positions that should be predicted in the ERgraph.metaRelationName.relationName Relation.


	metaRelationName (str) – Name of the MetaRelation that contains the target relation


	relationName (str) – Name of the relation that you want to predict


	batch_size (int) – batch size during prediction






	Returns

	yp – List containing the predictions for the target Relation



	Return type

	list










	
printBatchesLog(rel, e, bi, errTotOld, errTot, totLen, epochTime, loadTime, forwTime, LossTime, start, batch_size, mute=True)

	This class simplifies the live logging of the batches. If muted, it will only signal excessively long loading times.


	Parameters

	TODO – 



	Returns

	



	Return type

	meta private:










	
processDatasets(DS: list)

	This method takes the external Entity Relation graph representation, in the form of one MetaRelation at a time and converts it
into lower level data structures to be used within the wrapper,
creating a MetaDataset structure from the ER representation passed as input. This structure mimics the ERgraph, but it’s suitable for efficient multi-task mini batching during training.
This function is used internally by the NNwrapper and does not need to be called by the user.


	Parameters

	DS (MetaRelation) – 



	Returns

	
	DS (MetaRelation) – The original MetaRelation without the data matrices, in an attempt to save space. (still have to run benchmarks on it)


	datasets (list of SubDataset)


	losses (list of losses)


	refSize (size of the target matrix (to be removed))


	meta private:















	
saveModel(e: int)

	Method that stores the trained model at a certain iteration. Used internally.


	Parameters

	e (int) – Epoch number. The model is automatically saved using the model name and the epoch number using t.save function.

















            

          

      

      

    

  

    
      
          
            
  
How to cite

If you find this library useful, please cite: https://doi.org/10.1093/bioinformatics/btab092.




About us

This library has been developed during my stay at KU Leuven (ESAT-STADIUS), funded by KU Leuven and FWO grants.




Disclaimer

I did my best effort to make this library available to anyone, but bugs might be present.
Should you experience problems in using or installing it, or just to share any comment, please contact daniele [dot] raimondi [At] kuleuven [dOt] be.

Please note that:

THIS SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
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NXTfusion.Logger module


	
class NXTfusion.Logger.Logger(log_dir)

	Bases: object

This class actually writes data on the tensorboard logger. It could be used
directly or it can be used through the MetaLogger class


	
__init__(log_dir)

	Create a summary writer logging to log_dir.






	
histo_summary(tag, values, step, bins=1000)

	Log a histogram of the tensor of values.






	
image_summary(tag, images, step)

	Log a list of images.






	
list_summary(tags, values, step)

	




	
scalar_summary(tag, value, step)

	Log a scalar variable.










	
class NXTfusion.Logger.MetaLogger(model, port=6006)

	Bases: object

This class incapsulates the tensorboard logging code,
but uses the underlying Logger class to do all the real work.


	
shutdown()

	




	
writeTensorboardLog(step, errTot, lossScores, relationList, te)

	








	
NXTfusion.Logger.signal_term_handler(signal, frame)

	




	
NXTfusion.Logger.to_np(x)

	




	
NXTfusion.Logger.to_var(x)

	







            

          

      

      

    

  

    
      
          
            
  
NXTfusion.NXCollateUtils module


	
NXTfusion.NXCollateUtils.metaCollate(batch)

	




	
NXTfusion.NXCollateUtils.predictCollate(batch)

	




	
NXTfusion.NXCollateUtils.predictMetaCollate(batch)

	







            

          

      

      

    

  

    
      
          
            
  
NXTfusion.NXDatasetUtils module


	
class NXTfusion.NXDatasetUtils.MetaDataset(datasetList, domain1, domain2, name, ignore_index, side1=None, side2=None)

	Bases: Generic[torch.utils.data.dataset.T_co]

Class that represents the MetaRelations in the NNwrapper internal Dataset-based version of the ERgraph used for allowing a fast and consistent multi-task mini batching. Each MetaDataset can contain many SubDatasets, and when asked it provides a minibatch sampling from all of them in parallel.


	
__init__(datasetList, domain1, domain2, name, ignore_index, side1=None, side2=None)

	Constructor method for the MetaDataset class. It puts in a pytorch-friendly structure the data corresponding to a target MetaRelation, by storing several SubDataset (each corresponding to a Relation/DataMatrix/matrix).


	Parameters

	
	datasetList (list of SubDatasets) – List of Subdatasets. Each SubDataset corresponds to a Relation. The MetaDataset thus corresponds to a MetaRelation.


	domain1 (NX.Entity) – First entity involved in this MetaRelation (all the Relations in it are between the same entities)


	domain2 (NX.Entity) – Second entity involved in this list of relations (MetaRelation).


	name (str) – Name of the corresponding MetaRelation


	ignore_index (int) – Value corresponding to missing values. Used to allow fast runs on GPUs and minibatching even with different percentages of missing values among the Relations/SubDatasets in the same MetaRelation/MetaDataset.













	
countBalance()

	




	
countInstances()

	




	
getEstBatchSizeForXsamples(targetDomain1, samplesPerBatch)

	




	
getEstBatchSizeForXsamples2(numSamples)

	




	
getEstSize()

	




	
getTypes()

	




	
mergeDataSimple(v, idx)

	








	
class NXTfusion.NXDatasetUtils.PredictionDataset(x, label=True)

	Bases: Generic[torch.utils.data.dataset.T_co]






	
class NXTfusion.NXDatasetUtils.SideDataset(side)

	Bases: Generic[torch.utils.data.dataset.T_co]






	
class NXTfusion.NXDatasetUtils.SubDataset(xht, typep='binary')

	Bases: Generic[torch.utils.data.dataset.T_co]

Within the NNwrapper, during training, batches need to be rapidly provided for all the MetaRelations in the ERgraph and for each Relation in every MetaRelation. To do so, the NNwrapper.processDatasets function builds an internal Dataset structure that mimicks the structure of the input ERgraph. In this case, MetaDataset correspond to MetaRelation, and each Relation in a MetaRelation is represendet by a SubDataset in the corresponding MetaDataset.

Nevertheless, this is internal and it is transparent to the user.
:meta private:


	
__init__(xht, typep='binary')

	Constructor method for the SubDataset class. It puts in a pytorch-friendly structure the matrix corresponding to a target Relation, by transforming its DataMatrix into a pytorch Dataset.


	Parameters

	
	xht (dict) – Dict used to represent the matrix/relation data within a DataMatrix object


	type (str) – String specifying the type of the prediction. It must be “regression” or “binary”.













	
countBalance()

	




	
countInstances()

	




	
dump(name)

	




	
static load(name)

	











            

          

      

      

    

  

    
      
          
            
  
NXTfusion.NXMetaLoaderUtils module


	
class NXTfusion.NXMetaLoaderUtils.MetaLoader(loaders)

	Bases: object






	
class NXTfusion.NXMetaLoaderUtils.MetaLoaderIter(metaLoader)

	Bases: object


	
createIterators(loaders)

	




	
next()

	











            

          

      

      

    

  

    
      
          
            
  
NXTfusion package


Submodules



	NXTfusion.DataMatrix module

	NXTfusion.NXFeaturesConstruction module

	NXTfusion.NXLosses module

	NXTfusion.NXTfusion module

	NXTfusion.NXmodels module

	NXTfusion.NXmultiRelSide module











            

          

      

      

    

  

    
      
          
            
  
example1 module
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